Package: FedIRT 1.1.0

FedIRT: Federated Item Response Theory Models

Integrate Item Response Theory (IRT) and Federated Learning to estimate traditional IRT models, including the 2-Parameter Logistic (2PL) and the Graded Response Models, with enhanced privacy. It allows for the estimation in a distributed manner without compromising accuracy. A user-friendly 'shiny' application is included.

Authors:Biying Zhou [cre], Feng Ji [aut]

FedIRT_1.1.0.tar.gz
FedIRT_1.1.0.zip(r-4.5)FedIRT_1.1.0.zip(r-4.4)FedIRT_1.1.0.zip(r-4.3)
FedIRT_1.1.0.tgz(r-4.4-any)FedIRT_1.1.0.tgz(r-4.3-any)
FedIRT_1.1.0.tar.gz(r-4.5-noble)FedIRT_1.1.0.tar.gz(r-4.4-noble)
FedIRT_1.1.0.tgz(r-4.4-emscripten)FedIRT_1.1.0.tgz(r-4.3-emscripten)
FedIRT.pdf |FedIRT.html
FedIRT/json (API)

# Install 'FedIRT' in R:
install.packages('FedIRT', repos = c('https://biyingzhou.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.30 score 10 scripts 253 downloads 16 exports 73 dependencies

Last updated 1 months agofrom:38abff33cc. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 29 2024
R-4.5-winOKOct 29 2024
R-4.5-linuxOKOct 29 2024
R-4.4-winOKOct 29 2024
R-4.4-macOKOct 29 2024
R-4.3-winOKOct 29 2024
R-4.3-macOKOct 29 2024

Exports:fedirtfedirt_2PLfedirt_filefedirt_gpcmg_logLg_logL_entryg_logL_gpcmlogLlogL_entrylogL_gpcmmempersonfitpersonscorerunclientrunserverSE

Dependencies:askpassbase64encbslibcachemcallrclicolorspacecommonmarkcrayoncrosstalkcurldigestDTevaluatefansifarverfastmapfontawesomefsggplot2gluegtablehighrhtmltoolshtmlwidgetshttpuvhttrisobandjquerylibjsonliteknitrlabelinglaterlatticelazyevallifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellnlmeopensslpillarpkgconfigpracmaprocessxpromisespspurrrR6rappdirsRColorBrewerRcpprlangrmarkdownsassscalesshinyshinyjssourcetoolssystibbletinytexutf8vctrsviridisLitewithrxfunxtableyaml